题意
给出$a+b$和$ab$的值,求$a^n+b^n$.
答案对$2^{64}$取模。
思路
先说说这个模数,这个模数很特殊,我们直接开unsigned long long
让其自然溢出即可。
易得:$$(a^n+b^n)(a+b)=(a^{n+1}+b^{n+1}+ab(a^{n-1}+b^{n-1}))$$
令$A=a+b,B=ab,F(n)=a^n+b^n$,有
$$
\begin{bmatrix}
A & -B \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F(n) \\
A
\end{bmatrix}
=
\begin{bmatrix}
F(n+1) \\
A
\end{bmatrix}
$$
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <iostream>
#include <map>
#include <set>
//#define test
using namespace std;
const int Nmax=15;
typedef unsigned long long ll;
const ll mod=1LLu<<63;
struct Matrix
{
int n,m;
ll map[Nmax][Nmax];
Matrix(int x,int y)
{
n=x;m=y;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
map[i][j]=0LLu;
}
Matrix operator * (const Matrix b)
{
Matrix c(n,b.m);
if(m==b.n)
{
for(int i=1;i<=c.n;i++)
for(int k=1;k<=m;k++)
for(int j=1;j<=c.m;j++)
c.map[i][j]=c.map[i][j]+map[i][k]*b.map[k][j];
return c;
}
while(1)
{
}
printf("error!!!!!!!!!!!!!!\n");
return c;
}
Matrix operator + (const Matrix b)
{
Matrix c(n,m);
if(m==b.m && n==b.n)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
c.map[i][j]=map[i][j]+b.map[i][j];
return c;
}
printf("error!!!!!!!!!!!!!!\n");
return c;
}
void show()
{
printf("n:%d m:%d\n",n,m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
printf("%4llu%c",map[i][j],j==m?'\n':' ');
}
};
ll a,b,n;
ll work()
{
Matrix base(2,2);
base.map[1][1]=a,base.map[1][2]=-b;
base.map[2][1]=1LLu;
//base.show();
Matrix ans(2,2);
ans.map[1][1]=1LLu,ans.map[2][2]=1LLu;
ll newa=a*a-2LLu*b;
if(n==2)
return newa;
if(n==1)
return a;
if(n==0)
return 2LLu;
n-=2LLu;
while(n)
{
if(n&1LLu)
ans=ans*base;
base=base*base;
n>>=1;
}
Matrix now(2,1);
now.map[1][1]=newa;
now.map[2][1]=a;
//ans.show();
ans=ans*now;
//now.show();
return ans.map[1][1];
}
int main()
{
#ifdef test
#endif
//freopen("b.in","r",stdin);
int t=0;
//printf("%llu\n",mod);
//printf("%llu\n",mod*3LLu+1);
scanf("%d",&t);
t=0;
while(~scanf("%llu%llu%llu",&a,&b,&n))
{
t++;
if(!a && !b && !n)
break;
printf("Case %d: %llu\n",t,work());
}
return 0;
}